
Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

CSE 390B, 2024 Winter
Building Academic Success Through Bottom-Up Computing

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bloom’s Taxonomy &
Sequential Logic

Bloom’s Taxonomy, Storing Data: The Bit, Representing and
Building Memory, Program Counter (PC) Overview

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Lecture Outline

❖ Bloom’s Taxonomy
▪ Applying Higher Levels of Cognition to Learning

❖ Storing Data: The Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

2

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bloom’s Taxonomy

3

Remembering

Understanding

Applying

Analyzing

Creating

Evaluating

Recalling facts and basic concepts

Explaining ideas or concepts

Using information in a new (or similar)
situation

Drawing connections among ideas

Justifying your decisions or position

Producing something new

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bloom’s Taxonomy in Action: CSE 143

4

Remembering

Understanding

Applying

Analyzing

Creating

Evaluating

Remembering what Java objects
are

Understanding the use Java objects

Using Java objects defined in the
standard class libraries

How do Java objects relate to other real-
word tools?

Justifying why one would use a particular
Java object (ArrayList)?

Creating your own Java objects in your CSE
143 assignments

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bloom’s Taxonomy Discussion

In groups, discuss the following points:

❖ Identify various aspects of your academic responsibilities
as a UW student (e.g., attending lecture) and categorize
them in one of the levels on Bloom’s Taxonomy

5

❖ Discuss how you can practically
engage in higher-order levels of
thinking in Bloom’s Taxonomy

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Lecture Outline

❖ Bloom’s Taxonomy
▪ Applying Higher Levels of Cognition to Learning

❖ Storing Data: The Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

6

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Computer Overview

❖ CPU is the “brain” of our computer
▪ Does necessary computations (add, subtract, multiply, etc.)

❖ Memory is used to store values for later use
▪ Requires persistence across multiple computations
▪ Needs to change values at our discretion

7

COMPUTER

MEMORY

Data and
instructions

CPU

Program Counter
(which line of code
should I execute)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

The Data Flip-Flop Gate

❖ Simplest state-keeping component
▪ 1-bit input, 1-bit output
▪ Wired to the clock signal
▪ Always outputs its previous input: out(t) = in(t-1)

❖ Implementation: a gate that can flip between two stable
states (remembering 0 vs. remembering 1)
▪ Gates with this behavior are “Data Flip Flops” (DFFs)

8

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Aside: Treating the DFF as a Primitive

❖ Disclaimer: DFFs can be made from Nand gates exclusively
▪ But requires wiring them together in a “messy” loop that the

hardware simulator can’t simulate and isn’t very educational

❖ For simplicity, we will treat the DFF as a primitive in the
projects
▪ Just like Nand, you can use the built-in implementation

9

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Data Flip-Flop (DFF) Behavior

10

Clock
Signal 0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Sequential Chips

❖ A category of chips that utilize the clock signal, in addition
to any combinational logic

❖ Capable of:
▪ Maintaining state
▪ Optionally, acting on that state and the current inputs

• Can incorporate combinational logic as well

❖ Constructed from:
▪ DFFs
▪ Combinational logic (which is entirely constructed from Nand)

11

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Sequential Chips

12

Combinational
Logic

f

DFF

output

output(t) = f(state(t-1), input(t))

DFF

DFF

input

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

❖ DFF Specification:

out(t) = in(t-1)

D Flip-Flop: Time Series

13

in 0 0 1 1 0 1 0 ...

out 0 0 0 1 1 0 1 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

Example: out(t=3) = in(t=2)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Storing Data: The Bit

❖ A Flip-Flop changes state every clock cycle

❖ We will build the abstraction of a “Bit” that only changes
when we instruct it to

14

Bit

load

in out

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bit Behavior

15

0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

load

Bit

load

in outif load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bit Behavior

16

0

1

in
0

1

out
0

1

t=1 t=2 t=3 t=4t=0

load

Bit

load

in outif load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bit Time Series

❖ Bit Specification:

❖ Example 1: load(t=0) == 1, so out(t=1) = in(t=0)

17

load 1 0 0 1 1 1 0 ...

in 1 0 0 0 1 0 1 ...

out 0 1 1 1 0 1 0 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

if (load(t-1)): out(t) = in(t-1)

else: out(t) = out(t-1)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Bit Time Series

❖ Bit Specification:

❖ Example 1: load(t=0) == 1, so out(t=1) = in(t=0)

❖ Example 2: load(t=2) == 0, so out(t=3) = out(t=2)
18

load 1 0 0 1 1 1 0 ...

in 1 0 0 0 1 0 1 ...

out 0 1 1 1 0 1 0 ...

time t=0 t=1 t=2 t=3 t=4 t=5 t=6 ...

if (load(t-1)): out(t) = in(t-1)

else: out(t) = out(t-1)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Vote at https://pollev.com/cse390b

Which gates will we need to implement a Bit? Select all
that apply.

19

A. Mux
B. Xor
C. And
D. DFF
E. We’re lost…

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Bit

load

in out

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Implementing a Bit

❖ Bit Specification:

❖ Exercise: fill in the connections to the gates to create a
circuit diagram of Bit

20

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Implementing a Bit

❖ Bit Specification:

❖ Exercise: fill in the connections to the gates to create a
circuit diagram of Bit

21

if load(t-1) out(t) = in(t-1)
else out(t) = out(t-1)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Lecture Outline

❖ Bloom’s Taxonomy
▪ Applying Higher Levels of Cognition to Learning

❖ Storing Data: The Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

22

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Memory Representation

❖ Memory can be abstracted as one huge array

❖ Addresses are indices into different memory slots
▪ The width of an address is fixed for the system
▪ The nand2tetris project will use 16-bit addresses

❖ Each value in memory takes up a fixed width
▪ Not the same as address width
▪ The nand2tetris project uses 16-bit slots (values) in memory

23

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Memory Representation

❖ Can read and write to memory by specifying an address
▪ More details next week

❖ Example: x = memory[01...00]
▪ Reads the value in memory at address 01...00 and stores it in x

❖ Example: memory[01...00] = 7
▪ Writes the value 7 in the memory slot at address 01...00

24

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Building Memory: Register

❖ Bits store a single value (0 or 1)
▪ In memory, we need to store 16-bit values

❖ Registers are conceptually the same as a Bit
▪ Allows us to store and change 16-bit values
▪ Groups together 16 individual bits that share a load signal

// if (load(t-1)): out(t) = in(t-1)

// else: out(t) = out(t-1)

CHIP Register {

IN in[16], load;

OUT out[16];

...

}
25

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

RAM: Random Access Memory

❖ Abstraction of Computer Memory: just a giant array

❖ Goal: create hardware that can provide that abstraction

❖ Key attribute of arrays: “random access” lets us index into
them at any point

26

0
0000000

0
0000000

-1
1111111

25
0011001

124
1111100

0
0000000

9
0001001

-15
1110001

24
11000

25
11001

26
11010

27
11011

28
11100

29
11101

30
11110

31
11111

... ...

memory[26] = -1;

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Building Memory: RAM8 From Registers

❖ RAM interface:
▪ address: address used to specify

memory slot
▪ in: 16-bit input used to update

specified memory slot if load is 1
▪ load: if 1, then in should be written

to specified memory slot
▪ out: 16-bit output from the slot

specified by address

❖ RAM8 can be built from 8 registers
▪ address width is log2(8) = 3 bits

27

RAM8

...

0

1

n-1

load

in

16

address

k

out

16
Register

Register

Register

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Building Memory: RAM8 From Registers

❖ Step 1: Route in to every register
▪ We don’t want to update every

register, however
▪ Solution: choose which register to

enable with address

❖ Step 2: Choose which register to
use for the output

❖ When we think about making
choices in hardware, we want to
think about Mux and DMux

28

RAM8

...

0

1

n-1

load

in

address

16

k

out

16
Register

Register

Register

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Building Memory: The Rest of RAM

❖ After RAM8, can build larger RAM chips from a
combination of smaller RAM chips
▪ For example, RAM64 can be built using eight RAM8 chips

❖ Technique is similar to RAM8 but will have to use
different portions of the address

❖ The blocks section of the reading will be helpful
▪ For example, can think of each RAM8 as a block of RAM64

29

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Lecture Outline

❖ Bloom’s Taxonomy
▪ Applying Higher Levels of Cognition to Learning

❖ Storing Data: The Bit
▪ Bit Overview and Implementation

❖ Representing and Building Memory
▪ Array Abstraction, Building From the Bit

❖ Program Counter (PC) Overview
▪ Control Flow of Computer Programs

30

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Program Counter (PC)

❖ Memory is used to store data as well as code

❖ Instructions and operations are stored at different
addresses in memory

❖ Program Counter in the CPU keeps track of which address
contains the instruction that should be executed next

31

COMPUTER

MEMORY

Data and
instructions

CPU

Program Counter
(which line of code
should I execute)

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Program Counter (PC)

❖ Keeps track of what instruction we are executing
▪ If the PC outputs 24, on the next clock cycle the computer runs

the instruction at address 24 in the code segment

❖ Program counter specification:
if (reset[t] == 1) out[t+1] = 0

else if (load[t] == 1) out[t+1] = in[t]

else if (inc[t] == 1) out[t+1] = out[t] + 1

else out[t+1] = out[t]

32

PC

load

in

16

out

16

inc reset

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Project 4 Overview

❖ Part I: Cornell Note-taking
▪ Practice taking detailed notes in another class
▪ Think critically about the technique

❖ Part II: Building Memory
▪ Memory & Sequential Logic: Build our first sequential chips, from

a 1-bit register to a 16K RAM module
▪ Program Counter: Build counter that tracks where we are in a

program, with support for several operations we’ll need later
▪ Note: Folder split for performance reasons only

❖ Part III: Project 4 Reflection

33

Lecture 6: Bloom’s Taxonomy & Building Memory CSE 390B, 2024 Winter

Lecture 6 Reminders

❖ Project 3 due tonight (1/19) at 11:59pm

❖ Project 4 (Cornell Note-taking & Building Memory)
released today, due next Friday (1/26) at 11:59pm

❖ Eric has office hours after class in CSE2 153
▪ Feel free to post your questions on the Ed board as well

34

